1999 Joint Meeting EFTF - IEEE IFCS

AUTHENTICATING TIME AND FREQUENCY SIGNALS

Judah Levine, Time and Frequency Division and JILA,
NIST and University of Colorado

M/S 847, 325 Broadway, Boulder, Colorado, 80303, USA

ABSTRACT

I describe a protocol that can be used to
authenticate digital time signals transmitted between
time servers and client systems. This authentication is
useful to protect the data from being modified en route
and to guarantee that the messages really originated
from a bona fide server operated by a national timing
center. The protocol is based on the standard Network
Time Protocol, which is widely used for synchronizing
computers on the Internet. The authenticated version
of the protocol can be realized using either packet-
switched networks (such as the Internet) or standard
dial-up telephone circuits. The implementation using
dial-up telephone circuits can provide authenticated
messages with an accuracy of about | ms, but this
version requires dedicated modems and telephone lines
for its implementation. The Internet version can
provide equivalent accuracy in principle, but is
vulnerable to a number of attacks that can degrade the
accuracy and that are difficult to detect. Either method
is suitable for applications that only require a timing
accuracy on the order of 1 s. The protocol will be
generally available, but will be most useful for systems
that are involved in time-sensitive commercial or
financial transactions.

1. INTRODUCTION

Packet-switched networks (such as the
Internet) are often used to transmit time messages,
which can be used to control remote real-time
processes or to synchronize the clocks in networked
computers. The accuracy that can be realized in this
way is only on the order of milliseconds, but this is
adequate for many applications. Furthermore, the jitter
in the latency of the graphical user interface and the
instability in the frequency of the clock oscillator that
are used in many computers make it impractical to
exploit higher-accuracy messages, even if that class of
messages could be transmitted over the network.

The data and the supervisory messages that
support the synchronization infrastructure are generally
transmitted with only moderate security and cursory
authentication. This openness is due in large part to the
“sociology” of the Internet, which is based on simple
trust models. These models assume that protection and
authentication are needed more to protect against
programming errors or hardware failures than against
malicious attacks.

U.S. Government work not protected by U.S. copyright

This openness has served us well until now,
and it may continue to be adequate for many (or even
for most) network-based applications. However, it is
likely to be inadequate for network-based commercial
and financial transactions that use the Internet for
receiving time-stamps. Protecting these transactions
against network-based attacks is a general problem,
which must be addressed in the overall design of the
network transmission protocols. In this paper I will
focus on the special needs and unique requirements
associated with using packet-switched networks for
authenticated time synchronization. These
requirements may make it impractical to use some of
the general solutions that have been proposed for
protecting the network as a whole because these
solutions often do not support methods for obtaining
robust estimates of the time delay in sending a message
through the network. The resulting uncertainty in the
network delay sets a fundamental limit to the accuracy
that can be delivered using any synchronization
protocol.

The primary applications for these techniques
are likely to be time-sensitive commercial and financial
transactions where the value of a single transaction is
large enough to attract attackers and where something
more than the standard, relatively open methods of
authentication and security will therefore be required.
The number of such applications is relatively small at
the moment, but we expect that it will grow rapidly in
the near future.

A second important application for these
techniques will be to protect the messages that are~
transmitted between the time servers themselves. A
synchronization hierarchy is usually realized using a
relatively small number of primary “stratum-1”
machines that are connected directly to a primary time
reference, and a much larger number of higher-stratum
systems, which are synchronized by these primary
servers and which in turn synchronize end-node client
systems. Insuring the integrity of these messages is ~
very important, since a successful attack at this level
can have widespread effects. )

2. AUTHENTICATION AND THE NETWORK
TIME PROTOCOL

The Network Time Protocol (NTP) [1] is very
widely used for transmitting time messages over the



Internet and for synchronizing networked computers.
In one common implementation, a client machine
periodically queries a server and uses the responses to
synchronize its local clock. This protocol supports
optional authentication and validation using single-key
encryption. When this mode is enabled, the originator
of an NTP message computes an authenticator derived
from the message using an algorithm driven by a secret
key and appends the authentication string to the packet
before it is transmitted. The receiver repeats the
process of computing the authenticator and compares
the value it has computed with the value that it
received at the end of the packet. The message is
accepted if the two authenticators are equal. If the
receiver is a time server, then it usually does not
actually use the data in the message. It simply adds
time-stamps derived from its local clock, computes a
new authenticator and returns the modified message to
the originator. (The server may or may not respond to
a request when the authentication check on the
incoming packet fails. The server usually responds to
any request, unless access controls are in use, in which
case a failure of this authentication check is taken to
imply a violation of the access control.) The originator
validates the reply as described above, and, if the
message is validated, the data in the reply are used to
synchronize its local clock, to apply a time-stamp to an
event or for some similar task.

Since the status of the server is not modified
by this exchange, we need only focus on how various
kinds of attacks might affect the originating client
system. In normal operation, the exchange of
messages described above is always initiated by the
client, and the original outgoing packet is uniquely
identified by the time-stamp derived from the clock on
the client and inserted into the message when it was
first transmitted. Therefore, a simple “replay” attack —
in which an attacker tries to fool the client by
responding to its current query with an older valid
packet is easily detected, since the originating time-
stamp in this packet will not match the value that the
client expects (assuming that the client software
performs this check). The two other possible attacks
involve either spoofing the server or delaying the
response.

Apart from the relatively weak authentication
provided by the Internet protocol suite itself, the ability
of a rogue machine to masquerade as a legitimate time
server depends on the security of the authentication
process. This security, in turn, depends on two factors:
the strength of the algorithm that is used to compute
the authenticator (which is usually based on a
published and well-known method) and the secret key
that is used by the algorithm. We assume that the
secret key is known only to the legitimate parties to the

transaction, and that appropriate measures are used to
guarantee the physical security of the keys.

A strong authentication algorithm must satisfy
two requirements. First, even though the basic design
of the algorithm is known, it should not be possible to
recover the key using an algorithm that operates on the
message and the authenticator. Second, there should
be a negligibly small probability of finding a different
message that has the same authenticator. Since the size
of the message can be much larger than the size of the
authenticator, there are a very large number of
individual messages that have the same authenticator.
The second requirement is usually satisfied by ensuring
that the messages which have the same authenticator
are a very small fraction of the total number of
messages that might be sent and that there is no
algorithmic way of finding them that is more efficient
than simple brute force. It is also important that the
size of the key be large enough to prevent brute-force
attacks, in which the attacker simply tries every
possible key until the correct one is found. Clearly, the
size of the key that will minimally satisfy this
requirement increases with time as the hardware
available to an attacker becomes faster and the attack
strategy becomes more sophisticated. A robust design
must therefore use a key that is large enough to provide
some margin of safety against these attacks.
Alternatively, it must be a simple matter to increase the
size of the key without causing existing applications to
fail.

In the standard version of NTP, the originating
and receiving systems use the same algorithm for
constructing the authenticator. The only difference in
the processing at the two end-points is that the
originator simply attaches its result to the end of the
message, while the receiver compares its result to the
value that it was sent. The fact that the algorithms used
by both systems are the same is an important point,
because it means that the process used to compute the
authenticator need not have an inverse. Apart-from a
number of theoretical advantages, there is one very
important practical consequence — strong algorithms
that have a unique inverse can be used in cryptography,
and such algorithms often have export restrictions as a
result. There are no such restrictions on one-way
methods.

It is much more difficult to cope with an
attacker who delays an otherwise legitimate message
without altering it. The standard NTP algorithm
estimates the one-way delay between the client and the
server as one-half of the round-trip delay, which is
measured using the data in the messages. An attacker
who inserts an asymmetric delay into a network
element therefore introduces a bias in the time of the
client equal to one-half of this value. Rejecting packets

305



whose measured round-trip delays exceed some critical
value can bound the magnitude of this problem. This
strategy may not be optimum because it converts an
attack that would have introduced a bias into the time
of the client into one that effectively shuts down the
client altogether. Rejecting packets in this way is
therefore not a very effective defensive strategy,
although it may be adequate in some situations.

If the clock in the client system need only be
synchronized to the nearest second, for example, then it
is difficult for an attacker to insert an asymmetric delay
that is large enough to cause trouble while at the same
time being small enough to escape detection by routine
methods. It would be much more difficult to detect this
sort of attack if the required accuracy were on the order
of milliseconds, since, even under normal
circumstances, fluctuations in the symmetry of the
network delay are often of this order. Furthermore,
these fluctuations often have a flicker-like spectrum at
periods of a few hours, so that detecting a static bias
can be very difficult in this situation. In the general
case, therefore, it may be impossible to use the Internet
to support authenticated time information with
millisecond accuracy. The situation is more favorable
with telephone-based connections or with systems
connected to a local-area network (LAN) because the
fluctuations in the circuit delay and in its asymmetry
are much smaller to begin with. The potential accuracy
of the synchronization process is therefore greater, and
attacks are both harder to implement (because the
physical circuits of the LAN and the telephone system
are centrally managed) and easier to detect.

3. NTP AND SPOOFING

The symmetry of the authentication process
used by NTP has a number of advantages, but it has
one serious drawback. The client and the server use
the same key, and there is therefore nothing in the
authentication process to prevent a client from
pretending to be a server. We can minimize the impact
of such spoofing by giving each client a different key.
While this minimizes the damage that any client can
do, it substantially complicates the management of the
keys themselves.

If any client can communicate with any
server, then all of the servers must have tables of all of
the possible client keys. This is possible in principle,
although a successful attack on any server would then
compromise the entire system by exposing all of the
keys. A more robust arrangement would be to limit
each machine to communication with only one or two
servers. This arrangement is somewhat more
susceptible to denial of service attacks, but more
limited distribution of the keys results in an increase in
security that more than offsets this problem.

306

Another possibility would be to use different
keys for encryption and decryption.” A number of
“Public Key” algorithms of this type are in the
literature. {2] Using such an algorithm would simplify
the problem of managing and distributing the keys, but
it might raise problems of possible export restrictions.

The increased complexity of the algorithms
that are needed to realize public-key encryption and
decryption make them impractical to use for
authenticating the time messages themselves. However,
they can be used to define a session key, which is then
used to authenticate subsequent messages using a
standard symmetric algorithm. The session key does
not require the same level of protection as a static
symmetric key, since it is only used for the duration of
the current communications session.

4. CERTIFICATES OF AUTHENTICATION

Although all of the primary stratum-1 servers
will be under the direct operational control of a
national timing authority, the secondary stratum-2
servers will probably be operated by independent
agencies. Protecting the messages transmitted between
these systems is therefore not the whole story — in
order to preserve traceability to the national time scale,
we must also implement a method that can certify that
the stratum-2 servers are operating properly. There is a
similar requirement for a method to transfer a
certificate between the stratum-2 servers and the next
level of systems, which may actually apply time-
stamps to transactions and which might also act as
servers for another layer of clients.

The actual certificate can be transmitted using
another network transaction, and it clearly must be
protected using an authenticator that is similar to the
machinery that we have already developed. The NTP
protocol provides a class of messages that can be
readily adapted to this fungtion. Eluctuations.in tie
time that it takes this message to travel from the server
to the client are not critical, and the symmetry of the
delay is not an issue. It is a simple matter to protect
against re-play attacks by adding a serial number and
expiration date to the certificate.

The period of validity of this certificate can be
computed statistically. It is proportional to the ratio of
the required time accuracy of the client to the Allan
deviation of its clock oscillator, where the Allan
deviation is evaluated at the averaging time
corresponding the period of validity. The expiration
date would probably include a safety factor to protect
against unforeseen glitches and would therefore be
somewhat sooner than the value derived from the
statistics.



As an example, the Allan deviation of the
clock oscillator used in a typical computer is about 10
at a period of 1d. This level of performance would
support an accuracy of 1 s using less than one
calibration cycle per day. The certificates used in this
situation could have a shorter period of validity if
desired. This period would be determined as a balance
between the desire to detect failures as promptly as
possible and the increased cost resulting from more
frequent calibration cycles.

The symmetry of the authentication process
would allow a client to forge its own certificate. The
easiest way to deal with this is to have each server post
its copy of the certificate so that it can be publicly
viewed; another possibility would be to use public-key
cryptography to sign the certificates. Using public-key
cryptography seems like an unnecessary complication,
but the machinery for this process is well known, and it
can be added if needed. Even if none of these
additional precautions is used, the forgery will be
detected when the serial numbers of certificates issued
on subsequent cycles disagree between the values
expected by the server and the client.

5. THE COMPLETE PROTOCOL

We have now developed all of the pieces that
are needed for specifying the complete authentication
protocol. The client would initiate each transaction by
sending a request for time to the server. (No matter
who initiates the connection between the client and the
server, it is important that the client initiate the
conversation, because this choice requires that the
client transmit its notion of the current time without
any prompting from the server. A client whose notion
of the current time is either in the future or too far in
the past with respect to the clock on the server can be
detected as unsynchronized without further analysis.)
The Internet could be used to transmit this request if
the required accuracy is only on the order of 1s. A
dial-up telephone connection would probably be more
appropriate for authenticated synchronization where
significantly higher accuracy was required. (Even
though telephone connections have delays that are both
more stable and more nearly symmetrical than
connections that use the Internet, the residual
asymmetries in the delays in the circuit and the end-
point hardware make it impractical to achieve an
accuracy of significantly better than 1 ms. Realizing
an accuracy of 1 ms requires a careful choice of
modems, since many models have asymmetries in the
delays between the inbound and outbound channels
that can be as large as 10 ms.)

The server would respond to this message by
adding its time to the packet and returning the message

to the client. The interaction would be authenticated in
both directions using the method described in RFC-
2104 (or something equivalent)[3]. (The key used for
authenticating this and all subsequent messages would
be either the static key associated with this client-
server pair or a session key that was negotiated at the
start of the conversation using public-key methods.)
Although this authentication procedure is not
compatible with the existing NTP code, changing
authenticating algorithms is a minor change to NTP,
and no change to its basic message format would be
required. If static keys were used. they would be
transmitted between the server and the client using a
secure channel. The design of this ancillary channel is
not part of this authentication protocol. This additional
channel would not be needed if session keys,
negotiated using public-key methods, were employed.

In addition to the minor changes required to
the existing NTP code, the most important
consequence of this design is that casual associations
between clients and servers would no longer be
possible as at present. A server might still respond to a
non-authenticated request for time, but the full
machinery of the protocol would be available only to
users who were previously known to the server and
who had received a unique key to authenticate the
requests. If session keys were used to authenticated
requests, the public keys of the client and server would
have to be transmitted using some ancillary secure
method so that the negotiation of a session key could
be performed.

At short periods (less than 1-2 s), the
fluctuations in the system latency and in the symmetry
of the delay contribute appreciable white phase noise to
the measured time differences, and it is therefore
advantageous to repeat this exchange several times and
average the group of measured time differences. Our
experience [4] with network-based synchronization
algorithms suggests that using about 3 or 4 closely
spaced packets results in a significant attenuatiori of the
white phase noise without unduly increasing the cost of
the synchronization. A simple way to realize this idea
is to use 2 sets of 3 packets each, with the client and
the server each acting as the originator for one set. The
2 systems can then exchange their estimates of the
average time difference and network delay. Any
disagreement between the two sets of estimates can
provide an indication of a large asymmetry in the delay
between the two systems. If the estimated time
difference is within the specified limits, the server
would then close the conversation by sending a
certificate of authentication to the client. This
certificate would contain the estimated average time
difference, the uncertainty in this estimate, and the
duration of its validity. The client could use the time

307



difference to discipline its clock or it could realize this
discipline using some other reference source of time.

Although the individual messages that make
up the complete protocol do not differ significantly
from the formats used by NTP, the overall protocol is
very different, and the standard NTP software will have
to be modified to realize it.

6. BINDING THE TIME-STAMP

There is one final step in the process. The
time-stamp and the transaction which references it
must be bound together so that the association can be
verified after the fact. This binding is currently often
realized using a printed receipt, and the receipt might
also include the stamp of a Notary Public in some
cases. A number of digital versions of this idea are in
the literature [5]. While this is an important step in the
chain of traceability, the details of this step are outside
of the protocol that we have discussed and are best left
to the end-users of the time service.

7. CONCLUSIONS

The Internet is being used to support financial
and commercial transactions, and these transactions
often contain time-critical elements. The value of a
single one of these transactions may be large enough to
attract network-based attacks. I have suggested a
method for protecting the messages that are used to
synchronize the computers that are used to process
these transactions. The method defines a protocol that
is an extension of the currently defined Network Time
Protocol. The changes to NTP that are necessary to
support strong authentication are not large, but they
probably require special-purpose software on both the
client and the server to implement them. We do not
see this as a serious obstacle to the implementation of
authenticated time services, since it will probably be
needed by only a very small fraction of the current
users of network-based time services.

The accuracy of the authentication process
will be limited by the asymmetry in the path delay
between the server and the client. Attacks that attempt
to bias the time of the client by intentionally increasing
this asymmetry are easy to do and difficult to detect
when the Internet is used as the transmission medium.
This affects the accuracy of the authentication that can
be realized using this transmission medium; the size of
the offset-is limited by the maximum asymmetry in the
path delay that an attacker might be able to introduce
without being detected. It is hard to provide an exact
estimate of this value, but it probably could not be
‘much greater than about 1 -2 s. The time of the client
would be biased by one-half of this value.

308

Dial-up telephone circuits have delays that are
both more stable and more nearly symmetrical than
logical circuits implemented using the Internet. In
addition, it is more difficult to add a delay to one
portion of the path without being detected, since delays
longer than about 50 ms are very noticeable when the
same circuit is used for a voice connection. .-These
advantages should support substantially higher
accuracy when the time messages are transmitted from
the server to the client over dial-up telephone circuits,
and it should be possible to provide an authenticated
time service with a stability of better than | ms and an
accuracy of -3 ms using this medium.

8. ACKNOWLEDGEMENTS

This work is supported in part by the National
Science Foundation through grant NCR-9416663 to the
University of Colorado.

9. REFERENCES

[1] D. L. Mills, “Internet Time Synchronization: The
Network Time Protocol,” IEEE Trans. Comm., vol. 39,
pp. 1482-1493, 1991.

[2] Bruce Schneier. “Applied Cryptography, 2nd
Edition, New York: John Wiley and Sons, 1996, pp.
461-482.

[3] H. Krawczyk, M. Bellare and R. Canetti, “HMAC:
Keyed-Hashing for Message Authentication,” RFC-
2104, Network Working Group, February 1997. This
document is available electronically using ftp and
connecting to nis.nsf.net.

[4] Judah Levine, “Time Synchronization over the
Internet using ‘AUTOLOCK’,” Proc. IEEE
International Frequency Control Symposium, IEEE
Catalog No. 98CH36165, pp. 241-249, 1998.

[5]1 Judah Levine, “Autheptication, Time-Stamping
and Digital Signatures,” Proc. 27th Precise Time and
Time Interval Planning and Applications Meeting,
December, 1995, NASA Document CP-3334, pp. 439-
445. See also B. Cipra, “Electronic time-stamping: the
notary public goes digital,” Science, vol. 261, pp. 162-
163, 1993.



